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The displacement-displacement correlations in the thermal fluctuations of freely suspended smectic-A films
of 3 to 34 layers have been determined using small angle specular and diffuse x-ray scattering. By choosing a
symmetric resolution a simple separation of the resolution function into contributions parallel and perpendicu-
lar to the wave vector transfer is possible. This enables modeling of the scattered intensity without introducing
an artificial separation of the specular and diffuse contribution. The data are interpreted using a continuous
model to describe the displacement-displacement correlations, which is shown to be equivalent to the original
discrete model of Holyst@Phys. Rev. A44, 3692~1991!#, but computationally more efficient. Two character-
istic in-plane lengths are introduced:Rl , above which the distance dependence of the correlation function
follows a logarithmic law, andRc, above which the layers throughout the film fluctuate in unison, i.e.,
conformally. Values for the smectic bend and compression elastic constants as well as the surface tension are
obtained from the wavelength dependence of the correlations. The fluctuation profile depends only slightly on
the film thickness and is nearly flat for the fluorinated compound investigated. All films investigated are
conformal down to the smallest in-plane length scales measured. Furthermore, the collective long wavelength
thermal fluctuations, which only depend on the diffuse scattering, can be separated from the local smectic
disorder. The local contribution to the total fluctuation profile is found to be considerable.@S1063-
651X~96!02206-4#

PACS number~s!: 61.30.Cz, 68.15.1e, 61.10.2i, 05.40.1j

I. INTRODUCTION

Smectic liquid crystals are characterized by long-range
orientational order of the elongated molecules and reduced
positional order. The translational order is lost in the two
directions perpendicular ton, the axis of preferred orienta-
tion. However, parallel ton the molecular centers are on
average arranged in equidistant layers, thus forming a one-
dimensional crystal. Since such a system is at its lower mar-
ginal dimensionality, the translational order is not truly long
range but decays algebraically with position asr2h. In the
case of true long-range order the positional correlation be-
tween two layers would approach a constant if the layers are
infinitely far apart. The fluctuations of the smectic layers are
responsible for the absence of true long-range order. Ifu~r !
is the layer displacement from its equilibrium position,
^u2~r !& is found to diverge logarithmically with the sample
size~Landau-Peierls instability! @1#. In practice it is difficult
to observe the loss of long-range order because of the slow
logarithmic growth of the fluctuations with the size of the
sample@2#.

Due to their layered structure smectic liquid crystals can
form films that are freely suspended over an aperture in a
frame. This property of smectics has been known since the
beginning of this century@3#, but the interest in freely sus-
pended smectic films was renewed in the seventies by the
optical experiments of Younget al. @4# and Rosenblattet al.
@5# These experiments were followed by numerous calori-

metric, mechanical, hydrodynamical, and x-ray studies, a
number of which are collected in Ref.@6#. Freely suspended
films have a controlled size and high degree of uniformity.
The thickness can vary from 2 to over 200 layers, thus al-
lowing us to investigate the crossover from three-
dimensional to two-dimensional behavior, as well as the in-
fluence of the surfaces on the physical properties.

Recently theoretical models of free-standing smectic films
have been developed@7–11#, that extend the smectic bulk
free energy, which depends on the elastic constants for com-
pressionB and bendingK of the smectic layers, to include
the effect of surface tensiong at the interfaces. Central to the
theory is the calculation of the layer displacement function
s2(0,z)5^u2(0,z)& and of the displacement-displacement
correlation function C(R,z,z8)5^u~R,z)u(0,z8)&, where
r5~R,z! with R in the plane of the film andz along the film
normal. The original formulation by Holyst@8# uses dis-
cretized fluctuations as a function ofz. A later continuous
version@9# has been shown to be equivalent. In this article
we elaborate on a different continuous version of the theory
developed in@10#, which is computationally most efficient.
The equivalence of these various models is shown explicitly
in the Appendix.

Free-standing smectic films can be made large and flat
enough for measurements of the x-ray reflectivity@12–14#,
which probes the laterally averaged density profile through
the film. Recently, we extended this type of measurement to
include the nonspecular diffuse scattering@15#, which allows
a direct determination of the displacement-displacement cor-
relation function. Measurements of the diffuse scattering
have been used to gain insight into the lateral distribution of
surface undulations of liquid@16,17# and solid@18–22# sur-
faces, black soap films@23#, and smectic liquid crystal poly-
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mer films on a substrate@24,25#. In the last case the layer
fluctuations were dominated by the static undulations of the
underlying substrate.

In the case of freely suspended smectic films the diffuse
scattering probes the in-plane wave vector dependence of the
long-wavelength thermal fluctuations. This enables the deter-
mination of the interlayer displacement-displacement corre-
lation function, without assumptions about the local layer
structure. FromC(R,z,z8) values for the surface tension and
the elastic constants of the smectic layers can be derived.
Once this is known, we obtain from the specular x-ray re-
flectivity the local~uncorrelated! contribution of the smectic
disorder to the total fluctuation profile. Thus the extent of
local smectic disorder and the magnitude of the long length
scale thermal fluctuations can be separated by the combina-
tion of specularanddiffuse x-ray reflectivity measurements.
We find the local contribution to be non-negligible for the
fluorinated compound investigated, contrary to the usual as-
sumption.

At long in-plane length scales the thermal fluctuations are
highly correlated as a result of the slow algebraic decay of
the interlayer density-density correlation function. The layers
fluctuate conformally, i.e., they undulate in unison. In this
case the diffuse scattering is the coherent superposition of
scattering from each layer and will show maxima and
minima at the same positions as the specular reflectivity. The
shorter the in-plane length scale and the thicker the film, the
more likely it is to lose this conformality. All investigated
films ~up to 34 layers! of the fluorinated compound used are
conformal at the in-plane length scales measured.

Following the preliminary results given in Ref.@15# we
start in the next section with a full account of the theory. In
Sec. III the experimental details are given, which includes a
discussion of the specific choices for the resolution that are
required to analyze the data quantitatively. Section IV pre-
sents the experimental results and fitting parameters, fol-
lowed by a discussion in Sec. V.

II. THEORY

The free energy for a free-standing smectic film can be
written as the sum of a bulk contribution@26#.

FB5
1

2 E d3r FBF]u~r !

]z G21K@D'u~r !#2G ~1!

and a surface contribution@8#,

FS5
1

2
gE d2r @@¹'u~R,z5L/2!#2

1@¹'u~R,z52L/2!#2#. ~2!

The surface terms describes the energy cost associated with
increasing the surface area of the two free surfaces located at
z5L/2 andz52L/2, whereL5Nd is the thickness of a film
of N layers with layer spacingd. Within the framework of
the theory, bulk elastic constants are used; therefore the val-
ues ofB andK should be independent of the layer number
and the film thickness.

The calculation of ^u2(0,z)& and of C(R,z,z8)
5^u~R,z)u(0,z8)& is central to the theoretical formalism.

The caseR50 reveals information about the compressional
modes, that depend onB. By studyingC(R,z5z8) informa-
tion about undulations~and thusK! can be obtained. The
fluctuation profile depends upon the ration5g/AKB; for
n.1 surface damping of the fluctuations is expected, while
for n,1 the fluctuations amplitudes will be enhanced at the
surfaces. In this section we present an extension of the theory
developed in Ref.@10#.

In the original analysis by Holyst@8# two regimes are
obtained for theR dependence ofC(R,z,z8). At short dis-
tancesR a strong dependence ofC(R,z,z8) on the layer
position is found. At large separation all the layers fluctuate
in unison, i.e., conformally, andC(R,z,z8) decays logarith-
mically with increasingR. Qualitatively the two regimes can
be understood as follows. In a bulk smectic liquid crystal a
distortion with an in-plane wave numberQ52p/R decays
slowly from one layer to the other, due to the small com-
pressibility of the system in thez direction. The characteris-
tic decay length of the distortion is given byl (Q)51/(lQ2),
wherel5AK/B @26#. Therefore within this approximation a
film is expected to fluctuate conformally forR.Rc

52pALl as determined byl (Q)5L. Although this argu-
ment explains, in principle, the two regimes and givesRc for
a thick film, it does not provide the proper value ofRc in a
thin film, in which case the surface tension must be taken
into account.

To find out how the surface tension affectsRc in a free-
standing film we consider the first principal mode of the
fluctuations, which gives the main contribution to the corre-
lation function ~see the Appendix!. It corresponds to the
smallest eigenvalue of the operator defined by Eq.~A8! in
the Appendix. Higher modes can be disregarded when the
difference between the second and the first eigenvalue is
larger than the first eigenvalue. As this difference is propor-
tional toL22 @10#, the following consideration is valid only
for thin films. The mode with the lowest eigenvalue can be
written as cos(kz). The layers can be expected to fluctuate
conformally if cos(kz) does not change considerably across
the film, i.e., if kL!2p. From Eq.~A9! k is given by the
minimal positive root of

gQ2

Bk
5tan~kL/2!. ~3!

To locate the boundary of the real-space range of conformal-
ity we use tan(kL/2)'kL/2 andQ'2p/R. This yields

R@Rc'A2gL/B. ~4!

If we takeL51830 Å,K510211 N, B52.53106 N/m2 and
g53031023 N/m, Eq.~4! givesRc5660 Å which is consis-
tent with the numerical result for the same parameters shown
in Fig. 1 of Ref. @8#. In the limiting cases of infiniteB ~a
fully incompressible film! and zeroB, Rc is equal to zero and
infinity, respectively, as to be expected. The ratio%c

5Rc /ALl is a function ofn and equalsA2n according to
Eq. ~4!.

To calculate the displacement-displacement correlation
function we follow Ref.@10#. Instead ofC(R,z,z8) we will
use the full correlation function
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g~R,z,z8!5^@u~R,z!2u~0,z8!#2&

5s2~R,z!1s2~0,z8!22C~R,z,z8!. ~5!

While each of the right-hand terms diverges with increasing
film size and, thus, requires an additional cutoff, this is not
the case forg(R,z,z8). It can be written in the following
form ~see the Appendix!:

g~R,z,z8!5
kBT

8pAKB
E
0

j0
dj

3
1

j@~11n!22~12n!2exp~22j!#

3@ f ~j,2z,z0!1 f ~j,2z8,z0!

22J0~%Aj! f ~j,z1 ,z2!#, ~6!

wherej5LlQ2, j05Ll(2p/a0)
2, a0 is a lateral intermo-

lecular distance,z15z1z8, andz25uz2z8u ~with minimal
valuez0! and%5R/AlL. J0 is the Bessel function of order
zero, while the functionf is given by

f ~j,z1 ,z2!52~12n2!exp~2j!cosh~jz1 /L !1~11n!2

3exp~2jz2 /L !1~12n!2

3exp@2j~22z2 /L !#. ~7!

A cutoff chosen asz0.d/4 reproduces essentially the results
from the discrete model of Holyst@8#. Also, for the choice of
z0.a0 , the correlation function is not sensitive to the value
of a0 , because the integrand decays exponentially. This al-
lows us to expand the integration to infinity and, as a conse-
quence, eliminates the second cutoffj0. Now the integration
in Eq. ~6! can be carried out analytically, using the following
identities

1

~11n!22~12n!2exp~22j!

5
1

~11n!2 (
n50

` S 12n

11n D 2ne22nj

and

E
0

`

dv
1

v
@e2av2e2bvJ0~%Av !#5AS %2

4b D1 lnS b

a D ,
~8!

where

A~w!5 ln~w!1E1~w!1c

and E1 is the exponential integral function andc Euler’s
constant (c50.5772...). This leads to the following expres-
sion for the correlation function:

g~R,z,z8!5
kBT

8pAKB~11n!2
(
n50

` S 12n

11n D 2nH ~12n2!

3F lnS 11z1 /L12n

112z/L12n D1 lnS 11z1 /L12n

112z8/L12nD
1 lnS 12z1 /L12n

122z/L12n D1 lnS 12z1 /L12n

122z8/L12nD
12AS %2

8n1414z1 /L D
12AS %2

8n1424z1 /L D G12~11n!2

3F lnS z2 /L12n

z0 /L12n D1AS %2

4z2 /L18nD G
12~12n!2F lnS 22z2 /L12n

22z0 /L12n D
1AS %2

818n24z2 /L D G J . ~9!

Equation ~9! is the expression for the correlation function
used in the analysis of the experimental results.

In the particular case ofg5AKB Eq. ~9! yields

g~R,z,z8!5
kBT

4pg F lnS R2

4lz0
D1E1S R2

4lz2
D1cG . ~10!

The right-hand side of Eq.~10! does not depend onz1z8
and therefore the profile is completely flat~see also Ref.
@10#!. As a consequence information about the film thickness
is lost; Eq.~10! does not containL. It means that the smectic
film can be described as if it were cut from a bulk smectic
liquid crystal with a surface tension equal toAKB. The cor-
responding expression for a bulk smectic-A sample was de-
rived for the first time by Caille´ @27#. The two expressions
coincide forz05d2e2c/l. Equation~10! is also similar to an
equation derived in Ref.@28# for an infinite sample with the
assumptionz2@d. A proper choice ofz0 makes them iden-
tical. While in Eq.~10! the cutoff is constant, the correspond-
ing implicit z0 in Ref. @28# depends on all the other param-
eters. Ford530 Å,K510211 N, anda054 Å the ratiod/z0
is found to vary from 5.0 to 2.3 whenB changes from 107 to
109 N/m2. Thus this dependence does not result in a large
variation. Our choice ofz0 , as a cutoff parameter analogous
to a0 , is explained in the Appendix. The exponential decay
of E1 makes the second term in Eq.~10! negligible if the
argument is larger than 1. For this range ofR we find that
g(R,z,z8) depends neither onz nor z8, but varies logarith-
mically with R. Sincez2,L, this range can be estimated as
R!Rl52ALl, still for n51.

In order to determine the range ofR where g(R,z,z8)
increases as ln(R) we return to Eq.~9!, the full expression
for the correlation function, for arbitrary values ofn. The
logarithmic dependence can be written as
]Rg(R,z,z8);R21. Differentiating Eq.~9! and using
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]A~c%2!

]%
5
2

%
~12exp~2c%2!!

we obtain

]g~R,z,z8!

]R
5

kBT

2pAKB~11n!2
1

R

3H ~11n!2

n
2 (

n50

` S 12n

11n D 2n
3F ~12n2!expS 2

%2

8n1414z1 /L D
1~12n2!expS 2

%2

8n1424z1 /L D
1~11n!2expS 2

%2

8n14z2 /L D
1~12n!2expS 2

%2

8n1824z2 /L D G J .
~11!

The derivative]Rg(R,z,z8) is proportional toR
21 and at the

same time independent ofz andz8 if the result of the sum-
mation within the braces is much smaller than the preceding
term. In that case Eq.~11! simplifies to

]g

]R
5

kBT

2pgR
. ~12!

Integration leads to

g~R,z,z8!5
kBT

2pg
ln~R/ALl!1D~z,z8! ~13!

whereD(z,z8) is independent ofR. As we shall see in the
analysis of the experiments, the prefactor defines the slope of
a transverse diffuse scan in the appropriate region ofR.

To determine the range ofR where Eq.~13! applies the
summation in Eq.~11! must be carried out. Analytically this
is hardly possible, but some analysis can be done. In a nar-
row region aroundn'1 the term withn50 gives the main
contribution to the infinite sum. Taking only this term into
account we arrive at the condition exp~2%2/4!!1 for the
required range. It provides the sameRl as calculated from
Eq. ~10!. If n differs considerably from 1, the sum converges
slowly and the main contribution comes from the tail of the
sum. In this case terms in the denominators, that are small
compared to 8n, can be neglected. Using in addition

(
n50

`

exp~2an2b/n!'E
0

`

dx exp~2ax2b/x!

52A~b/a!K1~2Aab!,

where

a52 lnU11n

12nU, b5
%2

8
,

the required condition for the logarithmic behavior of
g(R,z,z8) can be written as

2%n

~11n!2Alnu~11n!/~12n!u
K1S %F lnU11n

12nUG
1/2D!1.

~14!

Since the modified Bessel function in Eq.~14! contains an
exponential decay as its argument gets larger, we arrive at

Rl'S Ll

lnu~11n!/~12n!u D
1/2

. ~15!

In the limiting case ofB→` Eq. ~15! evolves into

Rl'S LK2g D 1/2, ~16!

and whenB→0 we find

Rl→S Lg

2BD 1/2. ~17!

An expression much simpler than Eq.~9! can be derived
for incompressible free-standing smectic films. Taking in Eq.
~6! the limit B→` one gets

g~R,z,z8!5g~R!5
kBT

2pg E
0

R0qm
dv

12J0~Rv/R0!

v~11v2!
,

~18!

whereqm52p/a0 , R05ALK/(2g), andv5R0Q. For a thin
film of four layers withd530 Å, K510211 N, g53031023

N/m, anda054 Å we findR0qm'10. Thus, keeping in mind
that the integrand decays asv23, we can replace the upper
limit by infinity, except for the case of very thin films. With
the expansion

E
0

`

dv
12J0~%v !

v~11v2!
5E

0

`

dvH vJ0~%v !

11v2
1
cos~%v !2J0~%v !

v

2
1

v Fcos~%v !2
1

11%2v2G
1
1

v F 1

11v2
2

1

11%2v2G J ,
the integration can be carried out analytically. Using Ref.
@29# to evaluate the first three terms we finally arrive at

g~R!5
kBT

2pg
@ ln~R/R0!1K0~R/R0!1c2 ln~2!#, ~19!

whereKn is the modified Bessel function of ordern. It is
easy to see that due to a fast decay ofK0 in this situation
Rc50 andRl coincides withR0 . This is in agreement with
Eq. ~16! given above. Note that the prefactor is the same as
in Eq. ~13!.
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Figure 1 shows the dependence ofg(R,z,z8) onR calcu-
lated numerically on the basis of Eq.~6! and Eq.~19! for
various values ofB. The straight lines correspond to the
logarithmic law for the correlation function. The characteris-
tic lengthRl that limits this region starts atRl5R0 for infi-
nite B and increases with decreasing values ofB.

In summary we find that in general two characteristic in-
plane lengths are needed to describe the fluctuations:Rl and
Rc . For R.Rl the correlation function has a logarithmic
dependence onR and forR.Rc the layers undulate confor-
mally. In the case of a thin film the surface tension strongly
affects the fluctuations andRc5A2gL/B ~Eq. 4!. If g
'AKB we find Rl'Rc'2ALl. Equations~16! and ~17!
show howRl depends on the physical parameters when the
surface tension is much smaller and much larger than
AKB, respectively. IfB tends to infinity,Rc tends to zero,
but Rl is finite. In the opposite range ofB wheren>1, Rc
andRl are approximately equal. The prefactorkBT/2pg in
the logarithmic region of the correlation function does not
depend on the elastic parametersK andB, but is only af-
fected by the surface tension.

III. EXPERIMENT

A. Sample preparation

The compound investigated, 4-heptyl-2-@4-~2-
perfluorhexylethyl!phenyl#-pyrimidin ~FPP!, is pictured in
Fig. 2~a! where the phase sequence is also given. FPP was
obtained from Merck~Darmstadt, Germany!, and was used
without further purification. FPP was chosen because the flu-
orinated tail causes the density variations along the molecule
to be large and asymmetric, producing strong Bragg peak
scattering and, in particular, a strong second order peak.

The films covered an area of 28310 mm2 determined by
four razor blades spotwelded on the edges of a rectangular
hole in a polished stainless steel plate. They were drawn
manually at 120–123 °C by moving a wiper with a narrow
slit, which was filled with liquid crystal, over the hole. The
sample holder was mounted in a rectangular, copper sample
cell with inner dimensions of 40324310 mm3. The cell has
kapton windows allowing the incident and the reflected x-ray
beam to pass at angles between 0 and 12°. The film holder
was centered at the middle of the cell by pressing the back-
plate below the holder against the cover of the cell with a
screw. The sample cell was contained in a vacuum tight alu-
minum outer oven with Mylar windows. The temperature of
both cell and oven was measured with platinum resistors and
controlled independently by heating resistors attached to the
respective outer walls. Temperatures were regulated using
Eurotherm PID controllers to within 0.1°. Measurements
were performed at 88 °C, well in the smectic-A phase. Di-
rectly after creation the film generally consisted of regions of
different thicknesses. After several hours of equilibration the
final film thickness was achieved. The thickness was con-
stant during the experiment, as checked by scanning part of
the specular reflectivity every day. All but the thinnest film
were stable for more than a week.

B. Scattering configuration

Cu-Ka x-rays were obtained from a Rigaku RU-300H
generator operated at 18 kW maximum power. The wave
vector is given byk, with uku54.075 Å21. Measurements
were made using the geometry shown in Fig. 3~a!. It em-
ploys a bent pyrolytic graphite~002! monochromator
~20320 mm2, 115 mm radius!, which focuses the beam in
the out-of-plane direction onto the sample. Both Cu-Ka1 and
Cu-Ka2 lines are selected in this moderate resolution setup
@30#. A schematic of the scattering geometry is depicted in
Fig. 3~b!, wherea andb are the angles of the incoming and
outgoing wave vectors with respect to the surface.

The incident in-plane divergenceDa is defined by slitsS1
andS2, set at 0.3 mm and 0.05 mm, respectively, and sepa-

FIG. 1. The full correlation function versusR/R0 . R0 is defined
below Eq.~18!; z andz8 correspond to the top and bottom layers,
respectively. The calculation is for a 34-layer film with
g513.031023 N/m, K510211 N andd529.4 Å. The four curves,
from top to bottom, correspond toB is 107 N/m2, 108 N/m2, 109

N/m2 and`, respectively.

FIG. 2. ~a! The chemical structure of FPP;~b! The model for a
single smectic layer.
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rated byL15450 mm. This leads toDa50.044° full width
at half maximum~FWHM!, which was confirmed by a de-
tector scan of the main beam with very narrow detector slits.
S350.7 mm serve to reduce background scattering. The in-
plane detector acceptanceDb50.048 FWHM is determined
by slitsS450.35 mm in front of the scintillation detector at
a distance detector-sampleL25410 mm. A detector scan of
the main beam resulted in 0.062° FWHM and could be fit to
a Gaussian.

All slits were wide open vertically, whileS2 was set at 3
mm. The beam size on the sample was approximately 0.133
mm2 (H3V). In the scattering configuration described we
obtained an incident beam intensity of 83107 counts/s. The
background scattering at intermediate angles was near dark-
count levels of 0.1 count/s as a result of the absence of a
substrate as well as the use of an evacuated sample oven.
This allowed a dynamic range of nearly nine orders of mag-
nitude in the measured intensity, enabling to probe small
in-plane length scales.

During the experiments we have taken three types of
scans: specular reflectivity scans, in whicha andb are var-
ied together while keeping them equal, radial diffuse scans
wherea andb are varied while the sample is offset from the
specular condition by a constant anglev5~b2a!/2, and
transverse diffuse~rocking! scans in whichv is varied but
the total scattering anglea1b is kept fixed. In reciprocal
space specular scans probe the scattered intensity alongqz
with qx50, in radial diffuse scans bothqz andqx are varied,
and for small angles transverse diffuse scans probe essen-
tially alongqx at fixedqz .

C. Resolution

The in-plane divergencesDa and Db can be approxi-
mated by Gaussians, leading to a resolution area in the scat-
tering plane determined bykDa andkDb. From now on,Da
andDb will be expressed as Gaussian half widths, a factor
2A2 ln 2 smaller than the corresponding FWHM in Sec.
III B. The wave vector transfer can be written asq5kb2ka ,
with

qz5k~sinb1sina!, ~20!

qx5k~cosa2cosb!. ~21!

Differentiating with respect toa andb, while neglecting the
wavelength dispersion, leads to

dqz5k~cosbdb1cosada!, ~22!

dqx5k~sinbdb2sinada!. ~23!

With the assumption thatda and db are randomly distrib-
uted, the resolution widths inqx andqz are given by

Dqz5k@cos2b~Db!21cos2a~Da!2#1/2, ~24!

Dqx5k@sin2b~Db!21sin2a~Da!2#1/2. ~25!

For this work,Da'Db; such a symmetric resolution is ad-
vantageous for diffuse scattering measurements, in contrast
to the case of specular reflectivity measurements for which
typically Db@Da @18#. In the case of a symmetric resolution
we can write for the resolution function@31#

R~dqz ,dqx!5exp@2@dqz
2~a21b2!12dqzdqx~b2a!

12dqx
2#/~qzDa!2#. ~26!

In general, the resolution function cannot be separated indqz
anddqx , which is needed for a quantitative analysis of the
data. This is a result of the cross term that causes a tilt of the
resolution area. This cross term disappears if we express the
resolution as a function ofqi andq' , whereqi andq' are
the components parallel and perpendicular toq. We get for
all a andb

R~dqi ,dq'!5R~dqz ,dqx!ua5b . ~27!

At small angles the Gaussian resolution half widths perpen-
dicular and parallel toq are given by

Dqi5A2kDa, ~28!

Dq'5~qz/2k!Dqi . ~29!

Using Eqs.~28!, ~29! andqz52ka, we can write for Eq.~26!

R~dqi ,dq'!5expS 2
dqi

2

Dqi
2D expS 2

dq'
2

Dq'
2 D , ~30!

whereDq' andDqi are the resolution half widths perpen-
dicular and parallel toq. While at small anglesqi'qz'uqu
andq''qx , Dqi andDq' differ from Dqz andDqx , respec-
tively.

FIG. 3. ~a! The experimental setup with x-ray source (X), bent
graphite monochromator (M ), 4 pairs of slits (S1,S2,S3,S4) and a
NaI scintillation detector (D); ~b! The scattering geometry; the re-
ciprocal space wave vector transfer is defined asq5kb2ka .
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For this work, Dqi51.931023 Å21 and Dq'52.3
31024qz Å

21. Out of the scattering plane~z,x-plane! the
resolution is poor due to the focusing of the monochromator
and the widely set detector slits, andDqy.0.1 Å21. Thus the
intensity is effectively integrated over in this direction for the
range ofqx values probed.

For proper analysis of the diffuse scattering signal, it is
important that the film mosaic due to nonflatness of the
holderDvmos is small compared to the experimental resolu-
tion, or at least that it can be considered constant over the
range of the measurements.Dvmos contributes to the resolu-
tion width in the perpendicular direction as

Dq'
2 ~ tot!5Dq'

2 ~Da,Db!1q2Dvmos
2 , ~31!

while Dqi remains constant. The holder flatness was deter-
mined by transverse diffuse scans at various specular posi-
tions in qz , performed using a high resolution~Ge mono-
chromator and analyzer! setup. It was found to be essentially
constant as a function of the incident angle, and thus beam
footprint. The footprint of the beam on the sample is defined
by F5b/sina, where b is the width of the beam at the
sample position. For the largest footprint, which occurs at an
incident anglea'0.5°, the film mosaic is nearly Gaussian
with a widthDvmos50.035° FWHM. The film mosaic broad-
ens the specular peak in the transverse direction~and thus
increasesDq'! by less than 10% in the moderate resolution
setup described.

D. Intensity calculation

Following Refs.@8,18#, consistent with the first Born ap-
proximation but including refraction, the structure factor can
be written in the form

S~q!5F uRFu2exp~2qz8
2s loc

2 !E dx exp~2 iqxx!G~x,qz8!G
~32!

with

G~x,qz8!5(
m,n

N

exp@ iqz8~m2n!d#exp@2qz8
2gmn~x!/2#.

~33!

Here gmn(x)[g(x,zm ,zn), with zj5[ j2(1/2)(N11)]d, is
calculated using Eq.~9! and the double sum runs over allN
layers. The averagez component of the wave vector transfer
in the film isqz85(qz

22qc
2)1/2, whereqc is the critical wave

vector transfer for total reflection. The termuRFu2 is an exact
calculation of the Fresnel reflectivity of a single layer, in
which the smectic layer is approximated by the slab model of
Fig. 2~b! @32#. It is smeared with a Gaussian of widthsloc ,
which approximates the local~short wavelength! contribu-
tion to the total fluctuations. The two-dimensional resolution
convolution over (Dqi ,Dq') is performed as a one-
dimensional convolution~denoted aŝ ! alongqi with half
width Dqi , and a real space cutoff of 1/Dq' to the structure
factor integration alongx, giving

I ~q!

I 0
5F uRFu2exp~2qz8

2s loc
2 !

Dq'

A2p
E

2`

`

dx

3exp~2 iqxx!exp@2 1
2x

2Dq'
2 #G~x,qz8!G

^exp@2 1
2qi

2/Dqi
2#. ~34!

The cutoff to the integral in terms of the effective coherence
length allows a calculation ofgmn(x) without use of a reso-
lution determining cutoff as in Refs.@16,33#. Note that the
cutoff to the real-space integration in Eq.~34! is only pos-
sible with a separable resolution function and leads to an
expression for the intensity without an artificial separation of
the specular and diffuse component. Also, note that the nor-
malization to the integration~the termDq' /A2p! gives the
proper 1/q z

3 dependence for the diffuse component.
The data were corrected for three geometrical effects that

reduce the effective footprint of the beam on the sampleF8
and thus the scattered intensity. The first effect occurs at
small incoming anglesa, where the footprintF can be larger
than the sample dimension along the beam. Overfilling oc-
curred typically fora<0.2°. In addition, when the detector
angleb@a anda small, the sample area visible by the de-
tector is limited by the width ofS4, assuming a wide detec-
tor and no divergence of the beam. Finally, the films hung
approximately 60mm below the holder surface due to the
thickness of the razor blades, leading to incomplete illumi-
nation of the sample due to shadowing of the holder. This
occurred for incident and outgoing angles<0.5°. These three
effects can result inF8,F, in which case the intensity was
multiplied by the ratioF/F8.

Furthermore, intensities in transverse and radial diffuse
scans were multiplied by the factor~sina/sinu!, to correct
for the varying illuminated sample area whenaÞb. Trans-
verse diffuse scans are background subtracted. The back-
ground was calculated from scans with no film present and
from data for whicha<0 orb<0. Models of the radial scans
have a constant background added. All data were scaled to
the main beam intensity.

E. Fitting parameters

In the fitting procedure we have three groups of signifi-
cant model parameters: (N,d), (g,K,B), and
~sloc ,dtail ,dtail/dcore!. All but the number of layersN are given
a single value for modeling the data at all film thicknesses.
The second group is related to the hydrodynamic fluctuations
and the third group@see Fig. 2~b!# to the local smectic~dis!
order. To appreciate the experimental results it should be
realized how they depend in a qualitative way on the various
parameters. The surface tension is connected with the rough-
ness of the surfaces and thus with the overall falloff of the
specular intensity alongqz , as well as with the line shape of
transverse diffuse scans at smallqx . The combined effect of
g and the resolution widthDq' determines the ratio of
specular to diffuse intensity. The bending elastic constantK
is connected with the nonlinearity of the transverse line
shape, when plotted on a log-log scale, at largeqx even for
B→`. Thus its effect is observable as a deviation at largeqx
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from a simple power law behaviorI (qx);1/q x
12h, with

h5kBTqz
2/(4pg), expected for simple liquids with surface

tension @16#. For lateral length scales aboveRc capillary
waves dominate the fluctuations, and below this cutoff the
smectic fluctuations dominate. The compression elastic con-
stantB is determined by the value ofRc and/or the amplitude
of the fluctuations. If in-plane lengths are smaller thanRc

conformality is lost, which would show up in the loss of
fringes in radial diffuse scans as well as in the line shapes of
transverse diffuse scans across Bragg peaks compared to
those at intermediateqz positions.

The local density model used in the analysis makes no
assumptions about the expected molecular density profile,
but rather uses the most simple ‘‘slab’’ model@as shown in
Fig. 2~b!# which can describe the layer form factor for two
Bragg peaks. We assume up-down symmetry of the mol-
ecules in the smectic film and approximate a single smectic
layer as consisting of regions of constant index of refraction,
with a center region of a given index of refraction
ncore512dcoreand lengthdcore, and two identical tail regions
of given indexntail512dtail and lengthdtail . The layer aver-
aged dav5~dtaildtail1dcoredcore!/d determines the critical
angle, asqc52kA2dav, and adds a scaling factor to the in-
tensity. However shadowing effects of the film holder made
it impossible to measure nearqc . The total layer spacingd is
fixed by the position of the Bragg peaks, so that
dcore5d22dtail . Two parameters strongly influence the fit-
ting; dtail/dcore, which determines the strength of the Bragg
peaks, anddtail/d, which affects the relative strength of the
second to the first Bragg peak. These parameters show very
little interdependence.

Finally, a Gaussian smearing of widthsloc is included to
the local layer profile. The various contributions to the fluc-
tuations are assumed to be independent Gaussian random
variables and are related bystot

2 5s loc
2 1s2. Herestot is the

specular falloff given by exp~2q z
2s tot

2 ! and s5s(0,z) is
determined by the hydrodynamic fluctuations as fit to the
transverse diffuse scans. A Gaussian smearing with width
sloc will lead to an overall falloff of the specular intensity,
more strongly with increasingqz .

IV. EXPERIMENTAL RESULTS

Figure 4 shows specular~at qx50! and radial diffuse
scans ~measured along qx52.6231023qz and
qz51.3131022qz! for films of 3, 6, 20, and 34 layers. The 3
layer film only lasted long enough to complete the two radial
scans shown. Note the similarity of the specular and diffuse
radial scans indicating conformality between the interfaces
over the in-plane length scales measured. Transverse diffuse
scans were done across the first and second Bragg peaks and
across two intermediateqz positions at interference fringes.
Figure 5 shows transverse diffuse scans for films of 4, 20,
and 34 layers. Note the excellent agreement of the line
shapes at6qx , as a result of the symmetric resolution.

The positions of the Bragg peaks and the Kiessig fringes
in the specular reflectivity curve fixd andN, respectively.
We find d529.4060.04 Å, independent of layer position
and film thickness. With the obtainedN andd, the transverse
line shapes at fixedqz were fit, for each film separately,

varying only g, K, andB. Best fits for all films occur for
values ofg5~13.060.5!31023 N/m, K5(1.060.5)310211

N, andB5(7.562.5)3108 N/m2. Fits using these values are
given as the solid lines in Fig. 5. Fits to the specular scans
~Fig. 4! were then performed with only the third group
~sloc ,dtail ,dtail/dcore! as adjustable parameters, using the ob-
tained values ofg, B, andK in Eq. ~34!. We findsloc52.6 Å,
dtail50.19d, anddtail/dcore51.14. These values are essentially
independent of both layer number and film thickness. Finally
fits to the radial diffuse scans could be made using the above
obtained set of parameters, without further adjustments.

V. DISCUSSION

Let us first discuss the results for the various parameters
as obtained from the analysis. The value of 1331023 N/m
obtained for the surface tension is smaller than the values
reported so far, which lie in the range~20–26!31023 N/m
@34#. However, a recent direct measurement of the surface
tension of FPP was done after completion of our work, giv-
ing ~12.560.5!31023 N/m @35#. Values in the same range
were found for other fluorinated compounds. Apparently,
fluorination of an alkyl chain of liquid crystals leads to a
considerable reduction of the surface energy@36#. The value
obtained forK is quite normal compared to other systems
@1#. On the other hand, the value ofB is about two orders of
magnitude larger than values reported for other smectic-A
systems@37#. However, most of these published data were
taken close to a second order smectic-A to nematic phase
transition, whereB→0. This could easily explain an order of
magnitude difference with our situation. Another order of
magnitude might be a result of the fluorinated chain, which is
bulkier and stiffer than a hydrogenated chain. In fact, the
average cross section of a fluorinated tail is approximately
30% larger than that of a hydrocarbon chain@38#. In addi-
tion, gaucheconformers can practically be excluded, leading
to rigid rodlike fluorinated chains@39#. The resulting struc-
tural molecular model consists of a rigid aromatic core with
a flexible hydrocarbon tail on one side and a rigid fluorinated
tail on the other side.

Clearly our FPP system is nearly incompressible, with
layers fluctuating in unison down to the shortest in-plane
wavelengths measured. This leads toRc'20 Å for a 34 layer
film, which is of the order of molecular dimensions. Thus
loss of conformality of the fluctuations can only be expected
for unrealistically largeq values or much thicker films. The
transverse diffuse intensity for the 4 layer film has a loga-
rithmic dependence at allqx values measured, in agreement
with log10 (1/Rl)'21.3 Å21 as calculated using Eq.~16!.
For the 20 and 34 layer film log10 (1/Rl) is equal to21.7 and
21.8, respectively, just within the accessibleq range. In-
deed, deviations from the logarithmic dependence can be
seen in the bottom curves of Fig. 5~b! and 5~c! ~at the second
Bragg peak!. Films of different thicknesses have a different
sensitivity to the various parameters. The larger logarithmic
range of the transverse data for thin films results in a very
accurate determination ofg. However the data for the 4 and
6 layer film gives only a lower limit ofB5(7.562.5)3108

N/m2 and could equally well be fit using Eq.~19! derived for
B→`. Thicker films are necessary to determine the actual
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value ofB. The effect of a variation ofB is illustrated in Fig.
6 for the 34 layer film. It is apparent that changingB by an
order of magnitude can only lead to worse fits.

Finally we come to the third group of parameters contain-
ing all the local information. The value ofsloc52.6 Å for the
local fluctuations, which is independent of the film thickness,
can be compared withstot as obtained from a standard slab
model fit to the specular reflectivity@40#. This total fluctua-
tion amplitude has a contribution of both the thermal fluc-
tuations and the local molecular disorder. We find thatstot is
almost independent of the film thickness, being 4.8 Å for the
4 layer film and 4.5 Å for the 34 layer film. Using
stot
2 5s21s loc

2 gives values ofs54.1 Å ands53.7 Å, re-
spectively, for the hydrodynamic part of the fluctuations.
Evidently the local fluctuations add a non-negligible contri-
bution to the total fluctuation profile for FPP and the com-

mon belief that these can be neglected@7,8,14# is not gener-
ally valid. Recent measurements on a nonfluorinated liquid
crystal with a similar analysis resulted insloc51.1 Å, indi-
cating that the large value ofsloc for FPP is not an artifact of
the simple slab model used to describe the molecule.

The agreement between the model and the data for the
fluorinated liquid crystal investigated is remarkable, using
the same parameters for every thickness film. It should be
noted that the value of the layer spacingd529.4 Å was
independent of the film thickness as well as the position of
the layer in the film. Allowing smallerd spacings for the
surface layers assuming tilted top layers, because of the pres-
ence of a smectic-C phase for FPP at lower temperatures,
made the quality of the fits worse. This even applies to the
thinnest films. As opposed to Ref.@36# the data could not be
modeled assuming polar ordering at the surface.

FIG. 4. Specular~v50, upper curves! and diffuse~v50.15°, middle curves andv50.75°, lower curves! radial scans, with solid line fits
as described in the text. Curves have been shifted for clarity;~a! 3 layer film; ~b! 6 layer film; ~c! 20 layer film; ~d! 34 layer film.
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The best fits were obtained for the thinnest films where
the continuum model is assumed to be less valid. However,
the data exhibits deviations from the model for thicker films
at higherq values. This is most evident in the transverse line
shapes at the Bragg positions@Fig. 5~c! top and bottom
curves#, where varyingB and K did not improve the fits.
Off-Bragg peak transverse diffuse scans of the same film
@Fig. 5~c! middle curves# agree better with the model. The
Bragg positions are characterized by constructive interfer-
ence of all the layers. Thus the deviations could indicate that
the mechanism of coupled fluctuations across smectic layers
is more complicated than that incorporated in the model.

The values obtained forg, B, K result in l5AK/B
51.2 Å, an order of magnitude smaller than the layer spac-

ing @8#. Furthermoren50.15, and the profile of the hydrody-
namic~collective! fluctuations alongz is quite flat and nearly
independent ofN, as can be expected for a system with a
high B and lowg @8#. However, asn,1 an enhancement of
the surface fluctuations as compared to the interior of the
film should be anticipated. Figure 7 shows the fluctuation
amplitude as a function ofz, at largeR where the correlation
term is negligible, calculated using Eq.~A10!. Indeed, a
slight enhancement of the surface fluctuations is observed.

Figure 8 shows the molecular form factor calculated using
the slab model of Fig. 2~b! with the fit parameters for a 34
layer film. In addition, the form factor calculated by Fourier
transforming the electron density profile of an up-down sym-
metric molecule projected onto thez axis @41# is shown as

FIG. 5. Transverse diffuse scans at fixedqz , with solid line fits as discussed in the text; circles and crosses indicate positive and negative
qx , respectively;~a! 4 layer film with from top to bottomqz-values of 0.235, 0.292, 0.348, and 0.448 Å

21; ~b! 20 layer film withqz values
of 0.216, 0.287, 0.355, and 0.429 Å21; ~c! 34 layer film withqz values of 0.216, 0.292, 0.363, 0.427 Å21. Curves have been shifted for
clarity.
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the dashed line. The molecular form factor as obtained from
the fit differs considerably from the calculation with respect
to the following points. First, the layer spacingd529.4 Å is
larger than the length of the moleculel527.7 Å. This is in
agreement with previous measurements on other fluorinated
liquid crystals@39#. Second, the fitted value ofdtail is 0.19d
~dcore50.62d!, while from the calculation dtail'0.30d
~dcore50.40d! would be expected. Finally,dtail/dcore is 1.14,
where a difference betweendtail anddcoreof the order of 50%
would be expected from the simple model. We emphasize
that the fit parameters are hardly coupled~see Sec. III E!. For
example, whendcore50.5d, the form factor has a minimum

at the position of the second Bragg peak, which then will be
absent. In the case of FPP the minimum is positioned at the
low q side relative to the second Bragg peak indicating that
dcore.0.5d. The observed minimum relative to the position
of the first Bragg peak is a result of the presence of a high
electron density regiondtail.dcore for FPP at the air-film in-
terface. The experimental findings for the molecular form
factor can be explained with a model of antiparallel overlap-
ping FPP molecules, a smectic-Ad phase, where the bulky
fluorinated tails do not overlap with the hydrogenated chains.
As a resultdtail/dcore decreases anddcore is longer. This will
be the subject of a future paper.

The measurements of the displacement-displacement cor-
relations presented here, shed new light on earlier results for
freely suspended smectic films. Previous measurements@14#
of the fluctuation profile using specular reflectivity could
only test certain aspects of the Holyst theory, because the
specular reflectivity is only sensitive to the laterally averaged
electron density profile, and cannot distinguish between
long-wavelength fluctuations and the local disorder. Also,
the specular scattering is essentially unaffected by the corre-
lations^u(r )u(0)&, which in fact for the previous work were
assumed to be zero. We stress that it is essential to use a
combination of diffuse and specular scattering in order to
determine the total fluctuation profile.

VI. CONCLUSION

We have quantitatively determined the correlations of the
thermal fluctuations in thin freely suspended smectic-A
films. This is accomplished by measuring, via the diffuse
x-ray scattering, the in-plane wave vector dependence of the
hydrodynamic~collective! fluctuations which are governed
by the elastic parameters of the liquid crystal. This is to be

FIG. 6. Calculation of the scattered intensity in a transverse
diffuse scan for a 34 layer FPP film atqz50.355 Å21, with B5108

N/m2 ~dashed line!, 7.53108 N/m2 ~solid line! and 53109 N/m2

~dotted line!.

FIG. 7. The thermal fluctuation profile for a 4, 20, and 34 layer
FPP film, respectively.

FIG. 8. Specular reflectivity curve of a 34 layer FPP film and the
molecular form factor as obtained from the fit~solid line! and as
calculated for an up-down symmetric molecule~dotted line!.
Curves have been shifted.
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contrasted with results reported so far restricted to the specu-
lar scattering, which depends only weakly on the correlations
of the fluctuations. The combination of diffuse and specular
scattering measurements also enables separation of the con-
tribution of the collective thermal fluctuations and the local
smectic disorder. In contrast to the usual assumptions we
found the latter to be non-negligible.

The data were interpreted using a continuous model for
the calculation of the displacement-displacement correlation
function. With a proper cutoff it is equivalent to the previous
models of Holyst@7–9#. We show that there are two charac-
teristic in-plane lengths; ifR.Rl the correlation function
depends logarithmically onR with a prefactor that only de-
pends on the surface tension, while forR.Rc all the layers
fluctuate in unison.

All data ~specular, radial diffuse and transverse diffuse
scans! could be modeled using a single set of parameters. All
films we measured of the fluorinated compound, with thick-
nesses varying from 4 to 34 layers, were conformal down to
the smallest in-plane length scales probed. We show that in
order to analyze the data quantitatively, it is essential to use
a symmetric, separable resolution function, so that separation
of the specular and diffuse contribution to the scattered in-
tensity can be avoided. The separability of the resolution
function also allows a calculation of the correlation function
without a resolution determining cutoff as well as a simple
normalization of the intensity.
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APPENDIX: THE DISPLACEMENT-DISPLACEMENT
CORRELATION FUNCTION

The purpose of this section is to compare the three exist-
ing methods of calculating the displacement-displacement

correlation functionC(R,z,z8)5^u~R,z)u(0,z8)& for free-
standing smectic films. As mentioned in Sec. II the original
formulation by Holyst@8# is a discrete version of the theory.
Subsequently two different continuous version were pub-
lished@9,10#. In this paper we have elaborated on the formu-
lation of Ref.@10#. The starting point of all considerations is
the free energy in the Gaussian approximation as given by
Eqs.~1! and ~2!. The most convenient approach is to calcu-
late C(R,z,z8) in the ~Q,z,z8! representation and subse-
quently take the inverse Fourier transform with respect toQ.
Substituting

u~Q,z!5E dR exp@2iQ•R#u~R,z! ~A1!

in Eqs.~1! and ~2! yields

F5
1

~2p!2
E dQ FQ , ~A2!

with

FQ5
1

2 E
2L/2

L/2

dz@Bu]zu~Q,z!u21KQ4uu~Q,z!u2#

1
1

2
Q2g@ uu~Q,z5L/2!u21uu~Q,z52L/2!u2#.

~A3!

The approach of Ref.@8# deals with a finite set of discrete
valuesuj ~Q!, corresponding to the displacements of the lay-
ers. The second one@9# is based on a continuous representa-
tion of u~Q,z! in the form

u~Q,z!5u0~Q,z!1du~Q,z!, ~A4!

whereu0 satisfies an Euler-Lagrange equation for the bulk
anddu vanishes at the surfaces. The functionu0 is fixed by
two parameters,u~Q,z56L/2!, while du can be expanded
in a series of orthogonal functions. Such a representation
allows one to use the equipartition theorem and finally, after
taking the inverse Fourier transform, yields

^u~R,z!u~0,z8!&5
kBT

4pAKB
E

j1

j0
djJ0~Aj% !H e2j

j Fcosh~z1 /L !1cosh~z2 /L !

n~11e2j!2112e22j 1
cosh~z1 /L !2cosh~z2 /L !

n~12e2j!2112e22j G

1 (
n51

N21
cos@pn~z2 /L !#1~21!n21cos@pn~z1 /L !#

j21~pn!2 J . ~A5!
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Here j5LQ2l, j05Ll(2p/a0)
2, j15Ll(2p/W)2, where

a0 is the molecular diameter andW the in-plane size of the
system. Apart from some rewriting and differences in nota-
tion, this expression results directly from Ref.@9#. It leads to
a correlation function which coincides with that of Ref.@8#
within 5%.

The third approach developed in Ref.@10# is based on the
expression

^u~Q,z!u* ~Q,z8!&

5
* u~Q,z!u* ~Q,z8!exp~2FQ /kBT!Du

* exp~2FQ /kBT!Du
.

~A6!

All the integrals involved are well defined ifFQ is of the
form 1/2(u,Âu), Â being a self-adjoint positive operator. In
this case the correlation function can be written as

^u~Q,z!u* ~Q,z8!&5kBTÂ
21~z,z8!. ~A7!

The operatorÂ and its domain must satisfy the following
conditions. First, 1/2(u,Âu) must coincide withFQ for any
arbitraryu from the domain. Second,Â must be self-adjoint
so that an arbitrary function can be expanded into its com-
plete set of eigenfunctions. Third, all the eigenvalues must be
positive, in order that the integrals in Eq.~A6! converge. One
can prove that the operator

Â52B]z
21KQ4 ~A8!

acting on functionsu~Q,z! defined by the boundary condi-
tions

gQ2u~Q,6L/2!6B]zu~Q,6L/2!50 ~A9!

fulfills all the requirements. Using a compact expression for
the inverse operator@10#, we obtain

^u~R,z!u~0,z8!&5
kBT

8pAKB
E

j1

j0
dj

3
J0~Aj% !

j@~11n!22~12n!2e22j#

3 f ~j,z1 ,z2!, ~A10!

where the functionf is given by Eq.~7!. A simple analysis
based on the identity

(
n51

`
cos~pnz2 /L !1~21!n21cos~pnz1 /L !

j21~pn!2

5
1

2j@12e22j#
3$exp~2jz2 /L !1exp~2j~22z2 /L !!

22e2jcosh~z1 /L !% ~A11!

shows that Eq.~A5! and Eq.~A10! differ by an additional
cutoff in thez direction introduced into Eq.~A5! by cutting
the summation. As a result, Eq.~A5! gives a slightly smaller
magnitude of the mean-square fluctuations than our treat-
ment. As the layers have a finite thickness and, furthermore,
there is a smearing of the layers because of the thermal mo-
tion of the molecules, thez coordinate of a single layer is not
defined precisely. Thus it seems necessary to incorporate a
cutoff in thez direction into our formulation as well. It turns
out that a minimal magnitudez05d/4 for z2 ~instead of
zero! in Eq. ~A10! gives results identical to Eq.~A5!. All
calculations presented have been done with this choice ofz0 .
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